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ABSTRACT

This paper gives a method to derive new a steori error bounds for

Newton-like methods in a Banach space under Kantorovich type assumptions. The

bounds found are sharper than those of Miel (10] and include those recently

obtained by Moret (12]. The applicability of ~ method is studied for other

types of iterations. Various error bounds for the Newton method under the

Kantorovich assumptions are surveyed in the Appendix. -. -
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SIGNIFICANCE AND EXPLANATION

To find sharper error bounds for iterative solutions of nonlinear

equations is one of the important subjects in numerical analysis. This paper

gives a simple and powerful technique for improving known error L unds for

Newton-like methods in a Banach space under Kantorovich type assumptions.
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ERROR BOUNDS FOR NEWTON-LIKE METHODS
UNDER KANTOROVICH TYPE ASSUMPTIONS

Tetsuro Yamamoto *

Let X and Y be Banach spaces and consider an operator F : D C X + Y. If F is

Frechet differentiable in an open convex set Do C D, then the Newton method for solving

the equation

F(x) - 0 (1.1)

is defined by

xn+1 - xn - F'(Xn)-lF(xn), n - 0, 1, 2 .... (1.2)

provided that F'(xn)-  e L(Y,X) exists at each step, where L(Y,X) denotes the Banach

space of bounded linear operators of Y into X. Since Kantorovich [61 established his

famous theorem, called the Xantorovich theorem, which guarantees the convergence of the

method and existence and uniqueness of the solution of the equation (1 .1), and gave

another proof of the theorem with the use of a ajorizing sequence, many authors have made

efforts to find sharper error bounds for xn and establish similar convergence theorems

for the Newton-like method

Xn+ - xn - A(xn)'lF(xn), n = 0, 1, 2, ... , (1.3)

where A(xn ) is a linear operator which approximates F'(Xn).

One of the typical generalizations of the Kantorovich theorem is given by Rheinboldt

[20] on the basis of his majorant principle, which generalizes Kantorovich's majorant

*Permanent address: Department of Mathematics, Faculty of Science, Ehime
University, Matsuyama 790, Japan.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by
the Ministry of Education, Japan.

E11%
>, .. " .: .> • : " . . .,,'[_ -/ '2.'-.'-, -.. * ...,.',:" ,,,, ,,., ,



technique for the Newton method. A further generalization of fheinboldt's result is given

by Dennis (2], which in stated in an affind invariant form as folloves

TICORM1 I.I. et F : D C X + Y be Frechet differentiable in an open convex set

Do C D and A : Do . L(XY). Assume that for a point x0 e D0 , (x0)- exists and for

constants X > 0, L > 0, M > O, t > 0, m > 0, and n > 0, the following holds

IA(x0 ) (F'(x) - F'(y))l < XIx - yl , x, y e Do

IA(x (A(x) - A(x 0 )) < L Ix - x0I + L , x C Do , (1.4)

IA(x0 ) (F'(x) - A(xf)l < X Ix - x01 + m e x &

IA(x)-F(x0)I n , t <a L + )0 0 = K
<M , 2 . . -. x1 -

! (1.5)

(1 - £ - ,)2 2

s(x0,t) - {x Cf x-x0, < t* cD 0 .

Then the sequence {Xn) generated by (1.3) exists, remains in S(x 0 ,t ) and converges to

a solution x* of (1.1) which is unique in Do r S(x0,t) where

t- (- m + / -m)
2 

_ 2)/. Furthermore, error estimates

* *

Ix -x l< t - t n - 0, 1, 2, ... (1.6)

hold, where ItnI is defined by

f(t n )
to . 0 t n+ 1 - n + - , n 0, 1, 2, .. , (1.7)

with

f(t) - a
2

- (1 - t - m)t + n , g(t) - 1 - L - Lt . (1.8)

Rheinboldt's theorem (201 Theorem 4.31 corresponds to the case A. - 0 in Theorem

1.1. An improved version for the error bounds of fheinboldt was obtained by Kiel [10].

His technique is applicable to Dennis' bounds (1.6), too, and we obtain

-2-
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* *
t -t t -t

n t - n +1 n-t -
I, - x I ( Ix - x I - Ix - Xl • (1.9)" tn+1 n - tn tn- 1

The last bound in (1.9) is of the form found in Kiel (10].

Recently, with the use of another type of majorizing sequence, Moret [121 gave a

convergence theorem for the iteration (1.3) as well as error bounds, but, under the

stronger assumptions than those of Theorem 1.1. In fact, in our notation, he replaced the

condition (1.4) by

IA(x0) (A(x) - A(y))I < Lix - yE , x, y c (1.10)

and assumed that L < K M K - L and 2h < I. He has shown by numerical experiments

that his bounds are sharper than the last bound of (1.9). However, no proof is given.

In this paper, first in 12, we shall present a simple technique to improve the error

bounds (1.6) under the same assumptions as in Theorem 1 1 It is shown that the results

thus found are sharper than Kiel's bounds (1.9) and include what oret obtained under

stronger assumptions. Our technique is simple, but powerful, so that we can improve the

error bounds for the other types of iterations which were obtained with the use of

majorizing sequences. To show this, in 13, we shall consider the following three types of

iterations:

- x - AF(x) , n - 0, 1, 2, ... (1.11)
n+ n a nn

where a0 -0, an - n or an an-l n > 1 and A c L(X,Y)
n

- x. -F(xnyn)'lr(xn) , n - 1, 2, 3, .... (1.12)

where 8F : D. x Do + L(X,Y)s and

x+l - x - T'(x )'F(x) , n 0, 1, 2 .... (1.13)

where T : D C X + Y and T is Frichet differentiable in DO IC D, while the

differentiability of F is not assumed. Convergence theorems for iterations (1 .11) and

(1.12) were given by Dennis [31 and Schmidt (21], respectively. The iteration (1.13) wee

-3-
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considered by Zincenko (27], Mheinboldt (203 and Noret 112). We shall show that their

error bound* can easily be improved by our method. Furthermore, in 14, we shall

specialize our results to the Newton method and show that our bounds improve the basic

error bounds 1251 Loma 3] which are obtained from the Kantorovich theorem. Therefore,

from the previous results (24] - (26], we can conclude that our bounds for the Newton

method which coincide with those of Horet are sharper than those of Kie (11 l Potra-Ptk

(17] and Gragg-Tapia (51, etc. Pinally, a more detailed comparison will be made in the

Appendix between the various error bounds for the Newton method which have been obtained

by many authors under the assumptions of the Kantorovich theorem.

I -4-
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2. DWI 3D UER= BOM FOR (1.3).

Throughout this section, we keep the notation and assumptions of Teorem 1.1.

Furthermore, without loss of generality, we assume that x n  x n+, since, otherwise we

have xn ' x and Ix n - xI- -O. Then we have

X* Xn+ X* Xn+A(n)-(F( ) F(x*)

-A(xn)'l[F(x*) - F(Xn) - F'(Xn)(x* - xn) + {F'(X) - A(xn)I (x* - xn)]

I- * *

--A(xn)'lA(xo)[ f A(x0 )"{F'(x n + t(x - X)) - F'(Xn)I(x - xn)dt
0

+ A(x 0 )'l{F'(x) - A(xn)I(x* - xn ,

A(xn AX 0 )(I + A(x 0 ) (A(x) - A(x 0 ))

and

IA(xo) I(A(xn ) - A(x ))I < L Ix - x + L < Lt + I
n 0 - n 0 = n*

< aft + - 1 - m - (1 - L - m)V1 - 2h

where we have used the fact that tn < t if n > 0, which is satisfied because of our

assumption. Hence, using Banach's lemma, we obtain

* -. 12

Ix* - xnI < (I - L - LAn)-II.E jx* xn + (m + M&n)Ix - xn1
n+ X 1  (1 n 2 n n n

(1 - I - Ltn)'{K Ix - I + (m + Mt )Ix - x} ,

where An - Ox - x0l. For the sake of simplicity, we put d. - -xn

an t + LAn' bn - m + MAn ' n - L+Lt, bno m + Mtn ,

nn nn n nn,C t)an)-1 1 r2 h )(2.1)
. n~ - a)1 ( K +nt

and

(t) _ - )-(. Kt2 + t) (2.2)

-5-



II
then we have n(t) < ;nl(t) for all t ) 0 or qn(t) 3 ;n(t) for all t > 0.

Furthermore, put * (t) - %(t) - t + dn  and n(t) - ;nft) - t + d . Then it in clear

that if the equation I (t) - 0 has positive solutions n , n  such that
nt ft f

T ( T , then the equation 0nCt) - 0 has positive solutions n , n such that

n .. * On*0 *0 * .. * .. 0

.V < Tn in particular, we have 0 < Tn  n n  T n  if

SCt) < Cn(t) for t > 0. We first prove that the positive solutions Tn  and rn

do exist.

LEMA 2.1. The equation V (t) - 0 has positive solutions so that n(t) - 0 has

positive solutions, too.

Proof. The equation n (t) - 0 in equivalent to

12 Kt ( - b )t + (1 - ,, 0.2 1 n i anl n

Hence, by noting that L + N Ox and Oft - 2(1 - Z - m)tn + 2n = 2Vtn~1;Ctnl _

> 2dng(tn), we obtain

n n

m (1--n-)t 2 _ 2oK(1- t -Lt n)dn

M 2 + OK(2d g(t) - 2) - 2OKg(t n)dn

0 (1 - 1 - )2 - 2aaK > 0.

This proves Lema 2. 1. Q.E.D.

LIPM 2.2. Let Tn  be the least solution of the equation 0 n(t) - 0. Ihen we have

Ix - Xn I < T n (2.3)

Proof. By Loma 2.1, the equations #n(t) - 0 and In(t) - 0 have positive
solutions •~ , * and 'T •• respectively such that nsolutions T . T n and n * nn nn

Let D be defined as in the proof of Leam 2.1. Then we have

-6-
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Ix - I < t Vt t2 0 a) tn
nl n UK n1 m t
S - - - Kt

K

I n n + Q

a T ( (2.4)

Three cases can occur:

(i) The case where A < tn. In this case we have n (t) < ;,(t) for all t > 0 So

tha * * , * **

that n  < n < n  n , which, together with (2.4), implies that

Ix - x I < T n (2.5)

N * / **

(ii) The case where A . t and D > 0. In this case, we have r - T and the

inequality S in (2.4) is replaced by the strict inequality < so that we again have

(2.5).

(iii) Thecasewhere A -t and D 0. In this case, we have T = -n n n n

T - T so that (2.4) means (2.3).

In the cases i) and (ii), we can also assert (2.3). In fact, we have
* * *

Ix - nI - d < Ix - x I' < (Ix x -a)

or
*

n(,x -n 1) z0

Solving this inequality yields
* * * *

Ix - x I < T or Ix - x I > n
n - n n - n

By (2.5), the latter is excluded in the cases (i) and (ii). This proves Lemma 2.2. Q.E.D.

We sre now in a position to prove the following theorem:

-7-
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TKIORZW 2.1. Under the assumptions of Theorem 1.1, we have

**2(1 - a )d
Ix xI<T n n (2.6)

n n n2

2(1 - )d

< tn - f (2.7)1 - -b+/!(1 - a;) - 2K(1 - a )d
1 - a n + An n -K n )

S tn d

where d n = Ixn+ 1 -x I , Vtn+1 - tn+1 - t n , and an , bn, an bn are defined in

(2.1) and (2.2).

Proof. It remains to prove that

*
-Ct - t

t nd
n -Vt n+ 1  n

From the proof of Lemma 2.1,we already know that

2> (I - ) - ) 2  0

so that we have

* 2g(tn )d,

n' I m -(L + Nlt +1

2g(t )Vtn+1  d
In n*1

2f(t nd
1 I J m - axt n+ j m) 2 - 2rKn V

t n + l

n
1--- + i'(1 - fL-n) 2  

2K tn+1

-8-
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i4

UK(tn - t )(tn - t ) dn

aK(t - t ) Vtn+1
*n

t -t
n+Vn+1 dn

**

where t is the largest solution of f(t) - 0:

* 1 - i. - m + .11 - £ - n)2 - 2aKn Q.E.D.UK

COROLLARY 2.1.1. Under the assumptions of Theorem 1.1, we have

Ix " n+ < T n (2.9)

t tn+1 *
d < t -t

t n+ n = n+1

Proof. We have from Theorem 2.1

. -x nI<V(x n) - < n(Tn )T -dx "nili < nl x - n = n n

t -t t -tn+ 1= tn+ dn -dn Vtn+1 d n Q.E.D.

Remark 2.1. In Theorem 2.1, replace the constants K, L, M and m by G, aG,

(1 a)G and 1 - H respectively, where G > 0, 0 < a < 1, 0 < H < 1. Furthermore,

put A = Ix - x0I 1 - 1 - aGA , G = G/Q and H = (H - G&n)/Q " Then we have

-a n -b n  H - GAn  and

Xn G (H G- Gn 2  dn

n n

= I -" d (n 2.10)"
G n2dn

n

-9-
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This is Noret's bound (unllXn - xnl) - un(O) in his notation). He obtained (2.10) by

replacing (1.4) and (1.5) by the stronger conditions (1.10) and Gn/H 2 < 1/2 .

respectively. Under his assumptions, the bound (2.9) also reduces to Moret's bound

on(IXn+ 1 - XnI). (See (3.4) in his paper.)

As a dual of our principle, we have

-d-n - Ix - I < I  (n (Ix "x ) - ;(Ix . x I)
Ix-xI=nn n n

where Vn(t), Wn(t) are quadratic polynomials defined as in (2.1) and (2.2)

respectively. Then Vn(t - ;n(t) + t - d n 0 always has only one positive solution
• n C

T n Therefore, solving the inequality Y Ox- x n ) > 0 yields the lower estimates
-n n -

Ix- x nI > . This is a technique which was first adapted by Gragg-Tapia (5, and

later by Schmidt (221 and Kiel [11]. If we denote by Tn the unique positive solution

of Yn(t) (t) + t - d - 0, then we have T n > -n" Hence, as a dual of Theorem

2.1, we have the following result.

THEORI 2.2. Under the assumptions of Theorem 2.1, we have

I * 2 - a n)dnV" Ix -xI > n- (2.11)
nn +bn + Al - an + bn )2 

+ 2n - an)d
n

2(1 - Zn)d
> n n (2.12)

+ 1- + + /(- _ + g )2 + 2K(1 - ;n)dnn n n1 nnn

Next, we would like to estimate the ratio dn+1/dn . For the Newton method, it is

well known that d /d < 1/2 . Moret (12] obtained under his stronger assumptions that
n+1 n .

d n r(d) =( -aGnd) ( Gndn + - Hn)dn (2.13)nd = n nnn 2nnnn

where a, Gn , Hn  are defined in (2.10). On the other hand, Niel (101 obtained under the

Rheinboldt assumptions that Vtn+2

dn+2

-10-
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Therefore, it would be interesting to compare (2.13) with (2.14). An remarked in 1

(cf. 1.9)), (2.14) holds true under the assumptions of Theorem 1.1.

We have the following result.

THEOREM 2.3. Under the notation and assumptions of Theorem 2.1, let

Pn~ta ( 1-b n + lbn
2 

+ 2(1 - anl) W

n 2t n41 n 4n.

-1(1 t2
qn(t) - (I - an+,) -( t + bnt)_

2 n

and

rn(t) - (I - an - Lt) ( 1 t + bnt)

Then we have

Vtn+2
dn+ I < pn(d(n+)dn < qn(dn r n(dn < V dn  (2.15)

Proof. We have

xn+2 - X+I , -A(x n+lI){Fn )(x ) -(x) -F'(xn) (xn+1 - x

+ (F'(x n ) - A(x))(X+ I - x) ,

A(xn+1 ) - Ax 0 ){I + A(x 0 )- (A(xn+ - A(x 0 ))}

and

IA(xo) (A(x ) - A(xo))l < I + LA+ - a+I a + 4 n 1

Hence we obtain

dn+1 < qn(d n n nd n)

The inequality dn+I q %n(dn) is also equivalent to

, 1
I1* +b :bd - 0 - a )d _O. (2.16)
T n n n n+1 n+1- 2.6

Now, to prove the first inequality of (2.15), we may assume that d+I . 0. Then

Pn(dn+1) > 0 and solving (2.16) yields

-11-



-b +/b2 + 2T.1-+ 1 )d

n n -n dn+

which implies that d I p(d +,)d . Furthermore, lot a - n+I/p(rn+i). Te

(1 - % 1),+. 1 " S2 + b and

0/ 2 M 2 4i..,(l.a 2 n
1/2 X n 2 + b nd n- 01 - a n+l)dn+lald n

qnd)- Pn~4n+t 4n i-an n
V dd P n ~ ,+ I) %1 - a n+ 1

1/2 Xn 2 + bd - (S a+ b )d

m 1 - a+ 1

1/2 dn(d n - a)

I an+

which proves pnldn+)dn qn(dn). Finally, let

*(Bt) - (1 - £ - Ia - Lt) -14 t + + M)

Then, with the use of the majorant theory of gheinboldt and Kiel's technique, we have

n(4 ). *(A d )dn

d
# (tnoVtn+1)Vt n+ *

n+ I

Vtn+2 * V '

n+ 1

which completes the proof of Theorem 2.3. Q.3.D.

Remark 2.2. Mnder the assumptions of Noret, we have rn(dn ) - rn(dn). Therefore,

Theorem 2.3 improves the results of Kiel [101 and Horet [121.

COROLLARY 2.3.1. Under the assumptions of Theorem 2.3. we have dn dn , provided

that dn 0 0.

-12-
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Proof. As in the proof of Theorem 2. 3, it is easy to see that the inequality

1 oK(Vt )2 + ; oVt - (1 - )Vt 0
2 n+1 n n+1 n+1 n+2

holds. We may again assume that dn+ 1  ' 0. Then it follows that

2(1 -n+I )Vtn+2
Vtn+ I > n• n2(2. 17)

1 +/ ;n2+ 2ar 11-. %+lVtn+2

Observe that the denominator of (2.17) is positive, since Vt >_ d n+ > 0. Furthermore,

by a simple computation, we see that the inequality

2(1 - Z n+) t

bn + bn2 + 2oK(1 - in+)Vtn+2

is equivalent to

0Vtn 2 + 2(Lt + Mt( ) < 20 X m) (2.19)
n2 n+1 n % ( -L-m

o**

However, we have assumed that i > 0 so that t > tn  and

0KVtn+2 + 2 (Ltn+1 + c n ) n OK(Vtn+2 + 2tn+I)

-K(tn+ 2 + tn+1 )

< 2aft < 2(1 - L - m)

Hence the condition (2.18) as well as (2.19) is satisfied, which, together with (2.17),

implies that Vtn+ 1 > Vtn+2* Consequently we have

Vtn+2

dn+I < Pn(dn+ )d < q(d) rn(d) 2 d < dn

provided that d n 0. Q.E.D.

4n

We end this section by pointing out that Moret's bounds follow from Theorem 1.1 if

the condition (1.4) is replaced by Moret's condition (1.10). In fact, under the same

assumptions as in Theorem 1.1, except for replacing (1.4) by (1.10), we have

-13-4.

S.Q
:|%



IWx )n-I(F'(x) - F'(Yl)l < filx - yl a x, y C D o

IA1x )- (A(x) - A(x ))I < Lx-%, . C D

IA(X) (F'(x) - A(x))I < I , x - XI + ;& x e D

vhere

K-(1-a 1n) C.K L- (t-an)1 L, N= (1-an)' ,

( t f n n ft n

Therefore, an application of Theorem 1.1 to leads to

Ix x 1 (-)

2(1 - a r)d

- t t (2.20)

1 - - bn + I(1 - - - 2aK(1 - an)dn

provided that 29 < 1, where h - Oftn/(1 - ;)2 * The conditioi 2h 1 is indeed

satisfied. To show this, we compare the function 9n(t) 
= 
(1 - n  -Cxt

2 
+bt with

n ft 2 f

another function ;n(t) - (1 a ( ut
2
+ St) where an 1&n' - a +Rt . Then

jn(t) I ;n(t) and *n(t) - ;n(t) - t + dn - 0 has positive solutions if d o 0*

since we already know from the proof of Xasma 2.1 that

( n(1-a Sn)
2  

2o!(1 - a^ )dn

(1- a af~t n)2 2aK(1 - In )dn> - ft -f ft

> (1a-)
2 
-2WO1a 0

Hence the equation Cn(t) - ;n(t) - t + dn - 0 has positive solutions and

= (1 a - b )2 - 2ao(I - an)d > 0
n n An

-14-
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which is equivalent to 2h <1. If a = 1, which is also Horst's case, then the bounds

(2.20) coincide vith (2.6) with 1 0. Therefore9 the bounds (2.20) include those of

Moret as a special case. However, if a > 1, then the bounds (2.20) are inferior to the

corresponding bounds of (2.6) in spite of putting the stronger condition (1. 10) in place

of (1.4).

Remark 2.3. It also follows from the above argument that 2i; < I if 2h < 1. This

generalizes kMoret's result that 2G d/Hn2 <I if 2h < 1.

n n n
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3. AVYLICMMC 20 - ziaTza

* The arguments developed in the previous section may be applied to the other type

iterations. First we consider the iteration (1.11) considered by Dennis [31. Hs assumed

that x , 0  =et,, ) < n

IAl (F'(x) - A'y)), . x - y , x, y

0n. r~Jo (n -0)

n + y 1Ix1 -x 1 I (n , 1)

a 6n a (n 1) , 60 + 26 < I
"i-i

(K + 2Y)i

(I - 60 - 26) 2
~and

i(x 0 ,t ) C D 0
where

,t I + - 1-2 (1 6- " 26).
K +2y 0

Under these assumptions, he proved that the sequence IXn) generated by (1.11) exists,

remains in (x0 ,t*) and converges to a solution x of (1.1), which is unique in

I1+ A -2h 2D0 A S(x 0  + 6 0 )) if 2' < 1 where h' - Mn/(1 - 8) and unique In

00

S(x 0 , - if 2h' 1. Furthermore, defining the sequence {tn by

t o a 0, tn+1 - tn +- t n 0, 1, 2,...
n gn

where

f(t) -(K + Zy)t2- (1 - - 26)t + ni
T 0

g ( (n =0t

6 - 6 - )t n > 1)
0 a a

,-,,

"-' i ... . : ++ .+,. ++. ,., .,-16-



Dennis showed that

IXn+1 - XnI ' tn+l " tn

and

Ix - I < t - t, n = 0, 1, 2, (3.1)

We can apply our principle to improve the error bounds (3.1). In fact, we have

-Xn+l -
1 [F(x ) FlXn) F'ln)(X - x)'5 "

+ (F'(x) A )x - x )]

n

F(x) - A - {P'(x ) - F'(X. )} + fI'(x.) - u )L
n -1n n n

A" A 1 I+A (AC -Ao)}

n n
and

A, AO - o n{Aa - P'(xn )I + IF'IX ) - F'(Xo)I + IF'(x o ) - A o
1K~ _ n, + n; Kln x ,+ n

Hence we have

1 * - 2 %* + "
- KiX x n I +(aa + KIx Y I Ixj -x I)Ix -x nl

* 2 n n n I.n(i
1 -0 - a  - KIx - xa0n1 Ix -

n n j1

0
where we understand that 1 = 0. Therefore, if we again assume that

J1

d = I Xn+1 -xl 0 and put
n9

an =60 + 6 a + KIxa - x 0 1 + Y I dJ 1 , (3.2)
n n i 1

an 6 + a + (K + Y)t ( (3.3)

n n
n

bn =C + KIxn =x. + Y I djl (3.4)

n n J.1

bn 6 +K(tn" t ) + Yt a (3.5)

'4n n n

-17-
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Then we have

Ix- x4 1 I < (Iss - x 11 ) ;(Ix* - 1)

where 9 ntM and Z1 (t) are of the forms defined in (2.1) and (2.2), respectively.

rurthermore, it in easy to see that

2_
0 C - a 11- b ) 2Y(I - )d

>(I - a - 25 (K + 2y)t) 2 -2K+2)I-6 . -( N )
II n

S(I - 6 - 28 -(K + 2y)t Is)2_2(+2y 'tI

=(I - 5 -, 2.5) 2- 2(X + 2y)n > 00

Therefore, repeating the same arguments as in 12, we again obtain the estimates (2.6)-

(2.8) with the a., bn. ;11rn defined in (3.2) - (3.5).

N~ext, consider the iteration (1.12) which was discussed by Schmidt [211, [22). He

assumed that P is Fro'chet differentiable in Doand for some ic1 y c Do,~

8r(x11 Y1 )- I L(Y,X) exists, furthermore, he assumed that, with some constants a > 0,

b > 0, c > 0. the following holds

(r~)- rlv))i < 2alu - Ai, u, v c

IdF(x1 ~1  (dF(u,v) - r'(x))o (C a(Iu - Al + Iv -xl)r u, v, x e Do

Ix Ix - y11 I b .16r(x 11y1 )- 
1F(x I )I j c

Is-2a(b +c) 1 * + 1ab (I-/ -h

- (I .+ ab)2 2

S - (x 2 't b c) S-Do

yl x. , " nxn + (1- xn~n-l' Xn c (0,1], n 2

v.4.



Then he proved that the awpence IX.n generated by ( ) ts, rein in i and

converges to a solution x* of (1.1). His proof consists in establishng the relations

Ix -xn< + -t and Ix* - XIt -t n (3.6)
, ~n 1 -Xn n+1-tn

where the sequence {tn I is defined by

tl- b , l to . 0 ,

t 
t - anft n )

n+ 1  n tn -ftn) - f *)

Sn+1 A n+l n+i ( -n+1)tn , n - 1, 2, 3,

ith f(t) - at 2 - (1 + ab)t + b + c.

Under the assumptions of Schmidt, we can improve the bounds (3.6). In fact, as was

shown in his paper [211, SF(Kn exists for each n and we have

X* -1 I n (x
*1 - x n* -x n

+ {F'(x - 6FX nyn )}(x - Xl

so that

I X n+l < 9n -X n) - (1 - a I (ix - x 12 
+ b nX - xnl)

where

an alxn - yn + 2 1y n - XlY + Ix 1  Y1
1), b - aelx n - Yn'

and

n(t) - (1 a) (at + bx)
n n nx

**.o Therefore, if we put

a n altn + n " t S n -altn - n

and
i ;ni~y t) - (1 - nlat 2  n )

C

n n )'at 
2 + nt)

then Cn(t) n n(t) for t > 0 and, by the same argument as in 12, we obtain

-19-
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+ 9 2+ 1 - ad

ab /0 - a + b 2 + 4a1 - a)d

, a <n 0-a ) n(37
1 - an- b + b a O a)

2(1 2(1 a )d

a - + /(+I _ n)2 4a( n )d n

f d <t f t nif d < t

ft f+ t n n nn

loe Vtound1  d Vt his pe 2

tf

Ix bo _ t' o t solu o o t 2 t, y 8 - a lt h i .

s t ~1) -ti ea l e r theitrt < 1.13) x i y s o i

X t I

Zinenk [2), heibolt -20 ad rt [1]-et'b otiuu n 1 n

x 0  ,~'x 0  c (YX) exst and fo 1>0

hd < 1_

Ir( =Tx Vt+ n~)I - Vtn  n ,ycD

0

020

~* -1

aand

Z*cno[7,Piibld 2]adHrt [2.. et . e .llt 5o- - n ft .n T-f'



J'V

Define t* and t * * by

* '- (1 ) and t** 1 + rl - 2h 6)
KK

respectively and suppose that 1(x 0 .t ) C D0 . Then it is known [27], [20] that the

sequence Ixn defined by (1.13) exists, remains in S(x 0,t ) and converges to the only

solution x* of (1.1) in D0 r) S(x 0 ,t ).

Rheinboldt proved this by showing that

* *

Ixn+ xn tn+1 t n  n n (3.8)

where the sequence Itn) is defined by

f(t n )

t o . 0, tn+1 "t n + 4I-.- n n - 0, 1, 2,...,
n

with

f(t) - - (I1 - 6t + n , g(t) - I - 7 .

Therefore we can improve the bounds (3.8) on the basis of our principle: For the

iteration (1.13). we have

X +j - -T'(n IT(x*) - T(xy) - T'(xn)(x - xn)

+ (F - I)(x*) - (F - T)(xn)]

so that

Ix - XnlI < 9n(Ix - X 1) (1 - KA) 1- Kix* - x + 6x - x n )
n n a n n n 2 n n

n(Ix - n-1 KIx xj + 6 x - I)

where An Ilxn - x 0 1. %ence, an application of our technique yields

2(1 - t )da"

Tn
-n 2

1 + 6 - Xt + /0 + 6 - t ) + 2K(1 - f )dn

* 2(1 - KA nidn-f, - " -n ( " ,

1 + 6 n K + I( + 8 KA +'4 2X(1 -KA )d

-21-
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< Ix* -x I < 2(1- X& n)dn
n n 2

1- 5 A + A( I - IA) 21(1 - YA )d

n n n n

1-I It + AI -t 2K(1 - Itn )dn

t t n t -tn
C-----d (-~-- d 1  nVn+1 nfl nI1

The upper bounds Tr coincide with those of Moret, which he derived under the

assumption 2h < 1.

4. APPLICA2T O 108 ITZUIE

As a special case of the iteration (1.3), we consider the Newton method (1.2). We

call the assumptions of Theorem 1. 1 with I - L, I - M - m - 0 the Iantorovich

assumptions. Then we obtain the following result.

THEORDI 4. 1. UnTder the Ilantorovich asumuptions, we have

2d
T n (4.1)

1 + A1 + 21(1 - It n)-l d

n n42

< T ~2dn(43
-nn

-22-
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.4

< x xI< * 2d (4.4)

= 1+ / - 2K(1 -A )'d
n n

* =2d (4.5)
,- n -1

I + - 2K(1 -Kt d (

n n

2d
2ti n (4.6)

1 + 41-2KBndn

t -t
n d (4.7)

n+l

t -t

n d 2 (4.8)
P 2 n-1

where An n Ix- - x0 1 and Bn  are defined as follows (cf. Uantorovich [6], Rall [18]):

B 1, 0 = n , h 0 = h 1 ,

Bn-1 hn- Iqn
- I

B -n 2(1 hn- 1) , h n-1 , n>Bn 1 -hn ' . n Xnrn

Proof. The bounds (4.1), (4.3) - (4.5) and (4.7) follow from Theorems 2.1 and 2.2.

The bounds (4.8) are found in Miel [10]. Therefore, it remains to prove that

(I - Ktn) 1 = Bn . This fact is implicitly found in Kantorovich-Akilov [8]. However, we

can also prove this by using the relations

,2n

-- t n 2n and t n+1  tn n
nn

n

which were proved in the previous paper [26]. (See Proposition A.2 in the Appendix of

this paper.) In fact, we have

-23-
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I t *~ 2vin
n n

a -

I - 2- n -1

ft

since
L ,,h 2 /i-2hn_

- h_ - - -I
ft1 n-I

- f -2 0  - '-5, (4.9)
0 (1 - h. 1  ... (1 - h0 ) n

This proves (4.2) and (4.6). Q.B.D.

Remark 4.1. The bounds (4.4) follow also from the RUntorovich theorem. In fact,

under the Wantorovich assumptions, F'(xn)-1 exist and we have

IF'(X)-(F'(x) - F(y))E < (1 -K An)-I x - Y1, x, y e Do#n n

and

(1 - FAn)-I < Bn , n - 0. 1, 2 (4.101

The inequalities (4.10), which we obtained in the proof of Theorem 4.1, follow also by

induction on n

1 - KA )- < (1- 1 -Kd

- (1 - KAn.1) (1 - K(O - An-I)-l dnA ) - 1

B ]k-i (I - KB n-Il n-I

(1 - KSnn1 )

Hence we have

12k11 - d 2xnd < 2h < I
ft a n n n

-24-
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so that an application of the Kantorovich theorem to xn and n - dn  leads to the bounds

(4.4). As was remarked in [25], [26], the bounds (4.6) also follow from the Kantorovich

theorem by replacing x0 and in in the theorem by xn  and dn respectively. However,

Theorem 4.1 asserts that (4.6) is equal to T • Furthermore, we remark that it is shown
n

in a series of papers [24] - [26] that the bounds (4.6) are sharper than those of Gragg-

Tapia [5], Potra-Ptak [17] and Kiel [11]. Therefore, under the Kantorovich assumptions,

the Kantorovich theorem still gives us the best upper bounds. We note that the bounds

(4.4) also follow from Moret's bounds (2.10), provided that 2h < 1. Finally, we note

that Schmidt's lower bounds [22] for the iteration (1.12) reduce to (4.1) and the bounds

(4.2) may be found implicitly in Miel [11].

APPENDIX: 301R BOUNDS FON NIXMOU'8 NZCBOD UNDER THE UMOROVICH ASSUR.rIOUS.

After Kantorovich gave a proof of his theorem for the Newton method, many authors

have made efforts to find sharper error bounds under the same hypotheses. In this

appendix, we survey such results and clarify the relationships among them.

In 1948, antorovich [6] established his theorem by proving that IXn+1 - XnI < n

and

2n n-n2= n n 2n-i

n
where nn  and hn  are defined in Theorem 4.1. A year later [7], he gave another proof

by showing that

* *

IXn+1 - xn1 = tn+1 - tn , 1x -xl I t - tn (A.2)

where the sequence Itn} is defined by (1.7) and (1.8) with a -i, 1 - m - 0, L = K.

Since then, it seems to the author that numerical analysts are convinced that the bounds

(A.2) are sharper than (A.1). However, we can prove [26] that 2nn/(I + /I - 2n )

t* - t,. (Undoubtedly Kantorovich had known this fact.) For the sake of convenience, we

give the proof here. We begin by proving the following:

1%%
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PROPOSITION A. I. Lt t* and t t be the imallest and largest solutions of

f(t) 2 ]2 - + 11 0 , respectively. Furthermore, set s - t /t and2

A - t * - =2/ h /K. Then

2- (2h < 1)
0 P

(2h 1)
2n,

and

t t -t (2h ( 1)•

Proof. This proposition is essentially due to Ostrowski [161 Appendix 71. Lot

an - t t. and bn t** - tn . Then we have

ab a 2 ab b

nn t nn nAn1a+ b a + b +1 - n-a -ba+ As
anl a - n 1 i fl t xi x f

Hence

an (n-1)2 a " n 2

n n-1 0

and

b -a -t -t -A,xin n

which lead to

a n  2 n b "

if e < 1. If 6 = 1, then we have n - b, and (A-3) implies that

a .~.. . t* • Q...Sa n  & n-1=. 2- 2n T

-26-
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PROPOSITION A.2. We have
t n+1 - t n ' T n •

SI - 41 - 2hn 2n
t -t n 11

.n I +4r -2
.?. n

and

" t* I + K/n - O,2,2h..

That is, t* - t. and t** - tn are the solutions of the equations

1 Bnt2 t+ 0.

' i ] r ooif. As wi as shown by Gr agg-lTap)ia 151, we have

2 n I - 01-2h
0~ I (A.4)

I + 4 --"2- I +,Vi - 2hn

",.. Hence, if 0 < 1, then we have

2
n

2 1 - 4 -2 - if - 2h
9: n (cf. (4.9))
1 2n  2V - 2h n  2Bnr -- 2h

and

I + V 1" - 2h n  I + 1'1 2h 2 n

1 en  24/ -2h n  28 1(1-2

n* 1

Consequently, we have from Proposition A. 1

24 -2h 1 -n -n
t K 28 V 0, 1, n

__ n
hand

t** t 2VI 2 1 - 2h n I+V 2hn

nt~ K=0.

: t - tn K "2B V1 "--2h " Kn
n

-27-
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if 6 < 1. hese relations hold true for 0 - 1, since i n4 n I if

8 - 1. Furthermore, we have

t.., " t.n" (t* - t) - (t* - t.. )

I - /I -2h I I - 2hn+.

o~n Kn+1I

I _______ - n.E. I

ja - T (I - if - 2h n+1 )

hn

11 1

)since ( - -n

PROPOSITION A.3. The following relations hold:

j.) B

n - n n 2 lnO2nn- 1 2

on t t(2h < 1)

K B

(Vt) 2  2(1 - M 2 n

t* t XB (2h < 1)
nn

2 n-1 1
(Vt) l-2hn 2 (h

-28-
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Proof.- (i) In the proof of Theorem 4. 1, it was shown that B n/f -
2 h 2hn and

n- 1 - Xtn# n a 0. Furthermore, if n - 1, then we have /I- 2h~ + (ICn) 2  1- h

S al- If n 2 2, then we obtain

B-2 n-2 - 2 (-n-2 h. 2 
+ h n-2 2

-2I-2h 1 8 (M nB 1))

This proven the second equxality so that we have

K +A 2 +M )2. n+8-1 -1 . -1
n~ n n n n2h + (1 11 n n

mhe last relation (A.5) follows from Gragg-Tapia's relation (A.4). In fact, we have

il 2n - 2n
I + e2

(Ii) The second relation follows fromz (1. The first relation Is vell known and is

derived as follows:

* f(tn)
t -t . n
n+1 n fIM(t

n

1 (~ - 1) 2 (t 1  < tn

K 2

n

(III) It follows from Proposition A-2 that, if e8 1, then

1-0K n

n

-29-
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=Un 211n

n

1 n t t t 2
n -

if 0 1, then we have

t tn 2jn I 2n-
=- Q.I.D.

(~t i ) 2 11 'n 1

Throughout this appendix, we keep the Kantorovich assmptionsn. Therefore, according

to Qetrowaki [151, 1161, we can take a constant a a2 such that ah - 1. Then, there

exists aunique constant 9 1 0 uch that a-I + cosh 4p- +2 1 (0 + 0-). we can

prove the following:

PROPOSITION A.4 Tet a and 9 be defined as above. Then we have

e-2nV sinh 9 i e9 -9 (2h <1)

Ci) ta - - ih e9e? e29
n .li ( sinh 0(h 1

[2 n -1l inb 2N

t - t~k1 2n -

* (ii) at ,2+1 2

Proof. Define the sequence Ion) by

a I + cosoh2 y2(2cosh 2n
1
9 )

2 .
Goa0 an

Then we have a 2(a - 1)2 and a h -1. In fact, by induction on a, we have

Pa n+1h n 1 -2(a n 1) 1 h -(1-I. hf

-30-



Therefore

2 n = n n

cosh 2n'19 - sinh 2n'19 o-2n9

* cosh 2n-19 + uinh ?-I4

-. Furthermore, we have

t " + 1 2jn+ 1  hn _

VtT hqn+l n. I + '1-2hn+1  n I + V1 - 2hn+1

h 21 h
_ _= . 2n

1 he + 1II 2h + V'1 - 2hn

which proves (ii). To prove (i), we observe that

; A_ i 2h 2fa(u- 2) - 2 sirb .
11 h

Hence, we obtain from (ii) and Proposition A.l,

t t no+1  (2 sinh )ni "n+19 o"2  isinh f

1 -2 Sinh 2n

provided that • > 0 • Q.E.D.

Flmark Ai. Otroweki (161 chose a constnt a a 2 such that ah 1. Thn the
en 2n

above proof implies that anhn  1 and .,2 e 29 where the equalities hold if and

only if ah - 1. Therefore, the best choice of a is a - h 1.

PROPOSITION A.S. We have

! 1 -) 1 (1 -,ft >
S2nK

-31-
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Vroof,. Defin. the sequences Ifs an 0.1 by

A n

s0 - 6 0 - t- j(S -,IT "),

an '  (1 - /JC")2 n , n "1 (1 - /' - *'n , n , ,

Then, they satisfy the recurrence relations

n- 2'2x 2 1 2
I U-1 'A Bft~~S~ > I~1

in fact, we have

I hn l, U( hn 1 )2 1
". - -s7 (1 X -(1 hn_ -) -0 hn. V 1 2- 1 )

a n-1 n

n-I 2 'n- n- 1
v ' " " 1 "'" n11n-1 ) ,.li~l~. 1 2

Furthermore, we have y n_ 1 M_ 3 K bnce, by induction on n, we obtain

an > Bn , n > 0. Q.E.D.

PROSIMLTION A.6. We have

K,.t +,/1 -? (2+ n)2  /1- 2h+ (Z) 2 , n > ,

where dn - Ix - Knl

Proof. As a special case of 2heorm 2.3. we have

dn< (2-a ) .*l .1 2(1 -I -d 2 1 2nd.1
n< % Tn1I ; an) n-I . I I n-1

where an - KIxn - x01 and a I n' Bnco, we obtain from Proposition A.3 (i)

dd 2 Kd 2
n-t < n-1 (A.G)

dn a=-72 ' 2/- 2
2,/- 2 + ( .I , -) (2d.1)

since dn n" Zt follows from (A.6) that

h + (1_ )2 - )2 > I - h + (X4)2 (A.7)

n- 2 -2

-32-



The expression in the parenthesis in the left-hand side is non-negative, since we have

d < 1 d 1 from (A.6). Therefore, (A.7) means that

!12h + M 1) 2 - O > 2h + (K )**2

This proves Proposition A. 6. Q. B. D.

On the basis of Propositions A.1 - A.6, we have the following chart of the upper

bounds for the errors of the Newton sequence {Xn}, provided that the Kantorovich

assumptions are satisfied:

- (2h) n (Kantorovich [6])
2n_'

n.1 - 2h-i)2  (Dennis [11, Tapia (231)= 2 nK

n.n (Kantorovich [61)

- t - t n(Kantorovich (7])n

na 
n2 n ( 1 (9 
0n

a2

n -V h+af-i0-V 2h2 n-)~ (Ral Tapia 119])

nn-

' e-2n-I19 sinh q TI (2h < 1)

Binh 2n-19

S 2 1-n (2h= 1) (h - 1  1 + cosh 9. * > 0) (Ostrowski (15])

S2 
2n (2h<1)

21nn (2 1) (e t*/t ) (Gragg-Tapia 15])

-33-
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> 2- dnA(nrvk 11

-I-

0 d n-4 I~ (Grayg-Tapia (51)

t
n

n-1 I + /T -W n-I

nId -

-KYnnI 2 n-

KG2

Z%-I (]Ptra-Ptik (173)
/I 2h +(Ed 2 +/I

2

n -

I~ a 2

n n-I

n 2 (Kiel (101)~--= n-I

-34-
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2d~

I +"I'- 2h n

t -t

-- n+j n d n (Theorem 4.1)

2d (Yamamoto (25])

I + A1 - 21 ndn
n n

2% ~ (2h <1)

1 +

, 2d
n (2h 1)

I 2dT (Theorem 4.1)

n -1
1 + 1 - 2K(1 ft d a

,i ' .2d

n I 2X( - (Moret [121, Theorem 4.1)
+ +/ - 21(1 - IA)- 4

> Ix - x I
ft n

Similarly we have the following chart for the lower bounds:

2d
n (Gragg-Tapia 151)

1+ /'"+ 2h n

2d

nn

In +/A1 h (nn) 2

44

-35-
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.

241
,_ _ (Potra-Pftk [17)

214
1 ++ + n X )

2d
( n

qI + 2h + (2 -1

4 2d
• !n

1

!l b " ~~~ + / T+ -- 2 +1 1.1

, 2d

A n

I + s + 2X n+ d

2d
:-" -- (2h1 < 1)

+'.+ + n
, . + 

2  n  n

2d- (2h1 - 1) (Kiel [111)

• 2d
- ' ' - /1(Schitdt 221)

I- + /1 + 2X0( -t ]n'd/

-:36-
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i< =2d n (Theorem 4.1)
'% 1 + A + 2K11 - KM )-d

* in n

< Ix - I .

%n
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